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Minimal-Parameter Attitude Matrix Estimation
from Vector Observations

Yaakov Oshman* and F. Landis Markley*
NASA Goddard Space Flight Center, Greenbelt, Maryland 20771

A computationally efficient, sequential method is presented for attitude matrix estimation using gyro and vector
measurements. The method is based on a recently introduced, minimal-parameter third-order method for solv-
ing the orthogonal matrix differential equation in R”. In the three-dimensional case, these third-order attitude
parameters can be interpreted as temporal integrals of the body-frame angular velocity components. A nonlinear
algorithm is developed, which uses this minimal set of three parameters to estimate the nine-parameter direction-
cosine matrix. Having an extremely simple kinematic equation, these parameters render the resulting estimator
highly computationally efficient. An orthogonalization procedure, incorporated into the measurement process-
ing stage, enhances the accuracy and stability of the resulting algorithm, yet retains reasonable simplicity. The
performance of the new estimator is demonstrated via a numerical simulation study.

Introduction

SING a sequence of vector measurements for attitude deter-

mination has been intensively investigated over the last three
decades. First proposed in 1965 by Wahba,! the problem is to es-
timate the attitude of a spacecraft based on a sequence of noisy
vector observations, resolved in the body-fixed coordinate system
and in a reference system. Body-fixed vector observations are typ-
ically obtained from onboard sensors, such as star trackers, sun
sensors, or magnetometers. Corresponding reference observations
are obtained by using an ephemeris routine (for a sun observation),
from orbit data and a magnetic field routine (for a magnetic field
observation), or from a star catalog (for star observations). Uses of
attitude determination from vector observations were reported in
Refs. 2 and 3.

Inertial reference systems typically utilize vector measurements
in combination with strap-down gyros to estimate both the spacecraft
attitude and the gyro drift rate biases. Several approaches have been
proposed for the design of such systems, differing mainly in their
choice of attitude representation method.

The quaternion, a popular rotation specifier, was used in Refs. 4
and 5, in the framework of extended Kalman filtering (EKF) algo-
rithms. The incorporation of the QUEST measurement model within
a Kalman filter’s measurement update stage was presented in Ref. 6.
In Ref. 7, vector observations were used to estimate both the quater-
nion and the angular velocity of the spacecraft, in a gyroless attitude
determination and control setting. The main advantage of using the
quaternion representation is that it is not singular for any rotation.
Moreover, its kinematic equation is linear and the computation of
the associated attitude matrix involves only algebraic expressions.
However, the quaternion representation is not minimal because it is
four dimensional. This leads to a normalization constraint that has
to be addressed in filtering algorithms and increases the associated
computation load.

Euler angles were used by only a few researchers®® to parameter-
ize the attitude in the context of gyro-vector measurements attitude
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estimation. Although this parameterization is minimal, its use im-
poses alarge computational burden due to the transcendental expres-
sions involved in the computation of the attitude matrix. Moreover,
Euler angles are singular, as are all three-dimensional attitude rep-
resentations.

Inarecent effort to alleviate the computational burden, an EKF at-
titude estimator was presented'” that utilized the Rodrigues parame-
ters (also known as the Gibbs vector). Being a minimal set of attitude
parameters, the choice of this parameterization renders the resulting
estimator computationally efficient; however, the Rodrigues param-
eters are singular for 180-deg rotations. The modified Rodrigues
parameters (MRP), on the other hand, allow rotations up to 360 deg
(Ref. 11). Using this observation, an MRP-based estimator has re-
cently been presented.'?

The direction-cosine matrix (DCM), a natural attitude repre-
sentation, was used in a gyro-star tracker setting by several re-
searchers. Because it is inherently nonsingular, it requires no special
singularity-handling procedures. Moreover, its kinematic equation
is linear, as is its associated vector measurement equation, which
greatly facilitate the filter implementation. A recursive, EKF-type
DCM identification algorithm was introduced by Bar-Itzhack and
Reiner.!* Although the advantages of directly parameterizing the
attitude using the DCM are clear, the main disadvantage of this
approach is computational, as it requires the estimation of a nine-
dimensional parameter vector.

The work presented in this paper proposes to sequentially esti-
mate the attitude matrix using a minimal-dimension filter, thus al-
leviating the computational burden normally associated with DCM
identification. It is assumed, as usual, that the body-referenced an-
gular velocity is measured by an orthogonal triad of rate gyros.
The approach taken to this end is motivated by the idea of finding
a minimal-parameter solution to the orthogonal matrix differential
equation in R”, first introduced by Bar-Itzhack and Markley.'* In
this recent work targeted at solving a problem first raised in Ref. 15,
they presented a minimal-parameter solution to the orthogonal ma-
trix differential equation

V() =WEV(E)

ViyeR™, WwWEH=-W7@) Vi>1 (la)

V) = Vo, Wyl =1 (1b)
where the overdot indicates the temporal derivative. Exploiting the
properties of V and W, Bar-Itzhack and Markley introduced a novel
minimal parameterization of the orthogonal matrix V. Based on ex-
tended Rodrigues parameters, this parameterization enabled solving
Eq. (1) using only n(n — 1)/2 parameters, as opposed to n? integra-
tions implied by a straightforward solution of Eq. (1).
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Motivated by Ref. 14, Ronen and Oshman'¢ have recently in-
troduced a third-order method for the solution of the orthogonal
matrix differential equation in R”. The method is based on a third-
order, minimal parameterization of the orthogonal matrix V using
the n(n — 1) /2 off-diagonal terms of the skew-symmetric matrix

14
Alt, 1) 2 / W(r)dr
o

For the three-dimensional case, these parameters, hereafter called
integrated rate parameters (IRP), are the angles resulting from time
integration of the body-frame components of the spacecraft angular
velocity.

The idea underlying the work presented herein is to utilize
the minimal, three-dimensional IRP vector to estimate the nine-
parameter attitude matrix. Building on this state vector, the result-
ing three-dimensional filter possesses an extremely simple time-
propagation procedure, which is at the heart of its computational
efficiency. The DCM orthogonality constraint is also addressed, con-
tributing to the filter’s accuracy and numerical stability, yet keeping
its structure reasonably simple.

The following section briefly reviews the IRP minimal-parameter,
third-order method for the solution of the attitude kinematic equa-
tion. The filtering, orthogonalization, and prediction stages of the
attitude estimator are developed next. Special attention is given to
the analysis of the potential effects of the orthogonalization step on
the estimator’s structure. In the next section a numerical simulation
study is presented that demonstrates the accuracy and robustness
of the new algorithm. Concluding remarks are offered in the last
section.

Third-Order, Minimal Attitude Parameters

For completeness, this section briefly reviews the minimal-
parameter problem and the IRP method. Then, the method is adapted
to the three-dimensional attitude kinematic equation.

Minimal-Parameter Problem

Given the matrix differential equation (1), the minimal-parameter
problem is to find 1) a set of m = n(n — 1)/2 parameters that
unambiguously define V (¢), 2) the differential equation satisfied by
these parameters, 3) the transformation that maps these parameters
into the matrix V, and 4) a simple and efficient method to solve the
parameters’ differential equation and to compute V (¢).

The third-order method for the solution of Eq. (1), recently intro-
duced by Ronen and Oshman, !¢ is summarized in the following.

Let the skew-symmetric matrix A(?, ) be defined as

I
At 1) & / W (v)de )
fy
Then, a third-order approximation of the solution V (¢) in terms of

the entries of the matrix A(¢, ty) is given by the matrix V(r, ty),
defined as

v A1) AP
Ve, t) = {1 + AL, 1) + (t, o) (, 1)
2! 31!
(t — 1) _
+ 3 [At, )Wy — WoA(, t)] 1 Vo (3)

where W, = W (t,). Moreover, V is a third-order approximation of
an orthogonal matrix, in the sense that

Vi, )V (1) =1+ O[(f - t())4] “

where O(x) denotes a function of x that has the property that O(x) /x
is bounded as x — 0.

Referring now to the minimal-parameter problem, the new pa-
rameters, which define the third-order solution of Eq. (1), are the
n(n—1)/2 oft-diagonal terms of A (¢, t;). For the three-dimensional
case, these parameters have a simple geometric interpretation: they
are the angles resulting from a temporal integration of the three
components of the angular velocity vector

wt) Elwi () wi(t) wi®)) )

where w; is the angular velocity component along the i axis of the
initial coordinate system, and i = 1, 2, 3 for x, y, z, respectively.
The differential equation satisfied by these parameters is
Al 1) = W), Allo, 1) =0 (6)
which can be easily solved using any quadrature scheme. As demon-

strated in Ref. 16, the new minimal-parameter method is both com-
putationally efficient and accurate.

Attitude Matrix Kinematic Equation

In the three-dimensional case, the orthogonal matrix referred to is
the attitude matrix, or the direction cosine matrix (DCM), denoted
by D(t). The differential equation satisfied by this matrix is the
well-known equation

D(t) = Q)D(), D(ty) = Dy (N
where Q2 (1) = —[w(r) x], the cross product matrix corresponding
to w(t), is defined according to

0 —ds az
[ax]2 | as 0 —-al, Vo € R (8)
—a, A 0
This notation reflects the fact that
[ax]b =a x b, Ya,b € R? o)

In this case, the matrix A(z, 1,) takes the form
At 1) 2 —[0(0)x] (10)

where the parameter vector 8(¢) is defined as

0 210,(1) 6,(1) 6:()]7 (11
and
oi(z)é/ w; (v) dr, i=1,273 (12)
Attitude Estimator

In this section we develop the attitude estimation algorithm. The
development of the algorithm relies on the choice of the parameter
vector 8, defined in Eqs. (11) and (12), to be the estimator’s state
vector.

Let the sampling period be denoted by T £ £, 1 — . Using the
notation 6(k) £ 0(1,), the state vector at time 1 is

0(k) =10,(k) 6:(k) 601" (13)

and Eq. (12) implies

6; (k) =/ w;(t)dr, i=1,273 (14)

o
where w(z) is the spacecraft angular velocity vector, defined in
Eqg. (5). From Eq. (14) we have

Gk+1) =9(k)+/ w(r)dr (15)

%

Defining A(k + 1, k) to be the discrete-time analog of A(t, 1), i.e.,
A(k+1,k)é —[[8k + 1) — 8(k)] x] (16)

Eq. (3) is rewritten as

D+ 1) ={I+AC+1,k)+ 34K+ 1,0+ 1Ak +1.k)

+éT[A(k+1,k)Q(k)—S2(k)A(k+l,k)]}D(k) )
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In practice we only have access to the measured angular velocity,
denoted by w(?), which satisfies

W) = w(t) + dw(1) (18)

Here w(¢) is the rate-gyro (RG) measurement noise. For simplicity,
this noise is assumed to be a zero-mean, white, Gaussian process,
denoted as

Sw(t) ~ WNIO, Q)] (19)

where its intensity Q(¢) (the power spectral density matrix) is de-
fined by

E{8w(nw’ ()} = Q(1)8(t —s) (20)

(The incorporation of more elaborate gyro noise models is straight-
forward.'”)

The estimation algorithm comprises three subalgorithms. In the
filtering stage, the state estimate and the estimation error covari-
ance matrix are updated across the newly acquired measurement.
Following the filtering stage, the estimated attitude matrix is or-
thogonalized, to enhance the algorithm stability by annihilating the
numerical errors that have accumulated during the recent prediction
and filtering stages. The prediction stage deals with the propaga-
tion in time of these variables between consecutive measurement
updates. These three procedures are developed in the ensuing.

Filtering

Let the minimum mean-squared estimate (MMSE) of 8(j) based
on measurements up to and including # be denoted by 8(j | k).
Assume thatat £ , | we have on hand the predicted parameter vector
6(k+ 1]k) and its corresponding prediction error covariance matrix
Pk +11k)2 E(6(k + 1]k) 87 (k + 1]k)}, where the estimation
error is defined as

6 1k) 2 8() -8k @

The purpose of the filtering scheme, to be developed in the se-
quel, is to compute the a posteriori estimate and the corresponding
error covariance matrix by way of incorporating the new vector
measurements acquired at #; 4 ;.

As the first step in developing the measurement update algorithm,
we next derive the observation equation, relating the acquired vector
measurements to the state.

Observation Equation

Let S, and S, denote the reference Cartesian coordinate system
and the body-fixed Cartesian coordinate system, respectively. The
new pair of corresponding noisy vector measurements consists of
the unit vectors u(k+ 1) and v(k 4 1), which represent the measured
values of the same vector r(k + 1), resolved in S, and in S, respec-
tively. The direction-cosine matrix D (k + 1), representing the true
attitude of S, relative to S, at time #; , |, transforms the true vector
representation iy in S, into its corresponding true representation v,
in §, according to

volk +1) = Dk + Dug(k + 1) (22)

Assuming no constraint on the measurement noise direction, the
body-frame measured unit vector v(k + 1) is related to the true
vector according to
volk + 1) +n(k+1
v+ 1) = e DEmEr D 23)
Ivotk + 1) +n;, (k + D

where the sensor measurement noise n;, is a white, Gaussian noise
sequence with

n,k + 1) ~ N0, R, (k + 1)] 24

Because both vy (k + 1) and v(k + 1) are unit vectors, it follows from
Eq. (23) that
v(k+1) = vo(k +1) + P (k+ D,k + 1) + O, (k + DII?)

(25)

where the idempotent matrix
u”(k+ DET -k + Dyl + 1) (26)

is the orthogonal projector onto the orthogonal complement of span
{vo(k + 1)}. Defining, therefore, the effective measurement noise
associated with the measurement v(k + 1) as

ny(k + 1) £PE (e + D,k + 1) @7
yields the following measurement model:
vik+ 1D =vk+1)+n,k+1) (28)

where the effective measurement noise is, to a good approximation,
a white, Gaussian sequence with

ny(k + 1) ~ N0, R, (k + 1)) (29)
and the measurement noise covariance matrix is

R (k+1)—’PUl0(k+1)R (k+1)’PUL”(k+1) (€10)]

Remark 1. This measurement model is similar to that derived in
Ref. 6 for complete vector sensors.

Remark 2. In practlce because vy(k + 1) is not known, the pro-
jector matrix P (k + 1) can be approximated using the measured
value v(k + 1).

Remark 3. 1f, in the particular sensor used, n; is constrained to
be orthogonal to vy, then Eq. (30) reduces to

vy

R,(k+1) =R (k+1) 31

Furthermore, if the measurement noise is isotropic, R, (k + 1) =
a?I,then Ry(k + 1) = rr”Pf (k+1).

The vector measurements relative to the reference coordinate sys-
tem are commonly assumed to be accurately known. However, to
account for nonideal effects (e.g., star catalog errors), it is assumed
in this work that the true unit vector and the measured unit vector
are related according to

uk+1)=uk+D+n,k+1 (32)

where n,, L u, is a white, Gaussian measurement noise that is un-
correlated with n,, and satisfies

n, (k) ~ N0, R, (k)] (33)

with R, (k) being a known covariance matrix.

Because it is desired to relate the information contained in the
measurements to the state vector at the corresponding time point,
Eq. (22) is rewritten as

volk +1) = D[8(k +1) — k), D(R)upk + 1) (34)

where the notation D[@(k + 1) — 8(k), D(k)] reflects the fact that
the attitude at time #, . ; is related to the attitude at time ¢, via the
IRP vector difference 8(k + 1) — 8(k) [see Egs. (16) and (17)].
To exploit the information contained in the new vector measure-
ments, the nonlinear measurement equation (34) is linearized about
a nominal state, consisting of the most recent state estimate. As-
suming that immediately after the previous measurement update (at
#) linearization has been carried out about the a posteriori state
estimate, the resulting nominal state at the current measurement up-
date is the predicted estimate, O(k + 1| k). Therefore, the predicted
parameters are assumed to be related to the true ones according to

Ok +1)= Ok +11k)+50%k+1) (35)

where §8 (k1) is the perturbation of the parameter vector about the
nominal, i.e., predicted, state. Using now the most recent estimates
for D(k) and 6(k), namely, D(k [ k) and 6(k | k), respectively, in
Eq. (34), it follows from Egs. (28), (32), and (35) that

vk +1) —ny(k + 1) = D[O(k + 1| k) + 86k + 1)

— Ok | k), Dk 1))k + 1) = my (k + 1)) (36)



598 OSHMAN AND MARKLEY

However, as shown in the sequel, the a posteriori state estimate is
zeroed after each measurement update (due to full reset control of
the state). Hence, we should use the reset value of the state estimate,

6k |k) =0 37)
in Eq. (36). This allows us to rewrite Eq. (36) as
vk + 1) —ny(k+1)=D[OKk + 11k) + 80k + 1), Dk [ k)]

x [utk +1) = n,(k+ 1)] (38)

where it is understood that Eq. (37) is used hereinafter in the compu-
tation of the third-order approximation for the attitude matrix. Now
expand D about the nominal parameter vector using a first-order
Taylor series expansion, i.e.,

DOk +11k) + 86k + 1), Dk | k)] = D[Ok + 1 |k), Dk | k)]

where the columns of the (observation) matrix

Hk+D=[h*k+1) hk+1) hk+D]eR¥ @4

are
hik+1) = Gi[6k + 1k)]DKk | Kuk + 1), i=1,273
45)

Define now the effective measurement y(k + 1) to be
ylk+1)2v(k+1) = D[Ok + 11k), Dk | K)Julk + 1) (46)

and the effective measurement noise to be

n(k+ 1) 2n,(k+ 1)~ DO + 11k), Dk | k), (k + 1) (47)

Then, using these definitions in Eq. (42) yields the following mea-
surement equation:

+ Z;*D[e(k“) Dk 10 lpge 11930 (k + 1) (39) yk+1)=Hk+ 180k + 1) +nk + 1) (48)
where ()| 4 1,4 denotes “evaluated at 6(k+1|k).” Using Eq. (17), The measurement noise is a white, Gaussian sequence with
the iensuthy matrices appearing in Eq. (39) are computed as nlk +1) ~ N[0, R(k + 1] 49)
7, —D[O(k + 1), D(klk)]|9(k+”,\) =G;[6(k + 111Dk | k) where
i=1,2,3 (40 Rk +1)2R,(k+ 1)+ D[k + 1 k), D(k | k)]
where the matrices {G;}}_, are % R,(k + 1)DT[6(k + 11k), Dk | 1)] (50)
i 0 %92—%9193—%7'&)2 %03-{—%9]02—%7‘&)3—
G =|16,+16,6;+ {Tw, -6, 1- 165 +63) - 167 (41a)
| 3605 — 16,6, + 1 Tw; —1+ 165+ 63) + 167 -6, i
i -6, 16, — 10,05 + 1Tw, —1+1(62+62) + 167 ]
Gz = %9 929;——TW1 0 %93— 30 97_—sz3 (41b)
[1- }(49z +63)— 16 10,4+ 1616,+ 1Tw; -6, i
—93 - %(0% + 0%) — %9% %01 + %0203 + éTwl
Gy=| -1+ 1(67+6}) + 163 -0, 16, - 10,6, + 1Tw, (41c)

%0, - %0263 - éTwl

In Egs. (41) the components of w are evaluated at #.

Remark 4. In a typical application, it can be assumed that the
parameters {6;}_, are small, such that the second-order quanti-
ties {6,0;)} ' ;= are negligible in Egs. (41). Using this small-angle
approximation results in much simpler forms for G; [G(k + 11k)].
The actual use of either Egs. (41) or their small-angle approximation
depends, in practice, on the dynamics of the specific application.

Remark 5. Notice the explicit dependence of the sensitivity ma-
trices on the angular velocity, which sets this formulation apart from
previous estimators using vector observations.*%10

Using now Eq. (39) in Eq. (38) and neglecting second-order terms
yields

vk +1) — D[Ok + 1) k), Dk | K)Jutk + 1)

3
- Z GOk + 11k)]Dk | k)86, (k + Duk + 1)
i=1
— D[k +1]k), Dk k + 1) +n,(k+ 1) (42)

Observe that the first member in the right-hand side (RHS) of
Eq. (42) can be recast as

3
Z Gi[8(k+11k)]D Kk | k)86, (k+Duk+1) = H (k+1)80(k+1)
i=1

43)

16, + 16,0, —

tTw, 0

Having the linearized measurement equation (48) and the statis-
tical characterization of the measurement noise (49) on hand, we
can now derive the MMSE estimator for the parameter vector.

State and Covariance Update
Using Eqgs. (21) and (35), we have
80k +1) =0k +1)— Bk +1k)=0k+1]k) (51

Because é(k + 1| k) is an unbiased, MMSE predictor, we have

E{86(k + 1)} = E{O(k + 1 |k)} = (52)
and
cov{sO(k + 1)} = cov{B(k + 11k)} = Pk +11k)  (53)
Hence,
86k + 1) ~ N(O, P(k + 1 [k)) 4

Using the linearized measurement equation (48) and the statistical
properties of the measurement and prediction errors, Egs. (49) and
(54), respectively, the MMSE estimator of 80 (k + 1) is'®

S0k +11k+1)=K(k+ Dy(k+ 1) (55)
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where K (k + 1), the estimator gain matrix, is computed as
K(k+1) =Pk +11k)H (k+1)

x [H(k + 1Pk +1|k)HT (k+ 1) + Rk + D]~ (56)
Also, from Eq. (51) we have

Ok +11k+1) =0k +11k+1)—0k+11k) (7

Using Eq. (57) in Eq. (55) finally yields the state measurement
update equation

B+1k+1)=0(k+11k)+Kk+Dyk+1 (58

To derive the covariance update equation, we subtract 8 (k + 1) from
both sides of Eq. (58) and use Egs. (48) and (51) to obtain

BUk+1lk+ D)= —KE&+DHE+ D16k +1]k)
~ K+ Dnk + 1) (59

from which the familiar, Joseph-form, covariance update equation
results

Ph+1k+ D)= —KGk+DHGE&+DIPE+1]k)
x[I—KGk+DHGE+DIT

+Kk+DRE+ DK &+ 1) (60)

where Pk + 1|k + D2 E{6(k+ 11k + 10T (k + 11k + 1)} is
the filtering error covariance matrix.

Remark 6. In practice, numerically stable square-root algor-
ithms!® should be preferred to using the conventional covariance
update, Eq. (60).

Attitude Matrix Update

To compute the measurement-updated attitude matrix at time
t+1, We use the most recent estimate of the parameter vector
Bk + 1}k + 1), the estimated attitude matrix corresponding to
time #;, and the measured angular velocity matrix, defined as

Q) & ~[O®)x] (61)
in Eq. (17). This yields
Dk+11k+1)={I+Ak+1,0+3A*+ 1,k

+ 1A+ 1, k) + LTIAGK + 1, Q)

—QAK + 1,001} D" (k | k) (62)

where the a posteriori estimate of A(k + 1, k) is defined as
Ak+1,) 2 ~[6(k+1k+1)x] (63)

and D* (k| k) is the a posteriori, orthogonalized estimate of the at-
titude matrix at time #, to be discussed in the sequel.

Remark 7. Equation (62) is based on a third-order approximation
of the attitude matrix using the updated estimates of the IRP vector.
Obviously, the accuracy of this third-order approximation relies on
the assumption that these parameters are small. In fact, it will be
shown in the sequel that this is always the case, because the updated
parameters are reset to zero after each measurement update. More-
over, the components of the parameter vector at each data point can
always be kept small by selecting a sufficiently small discretization
interval.

Estimate Reset

As shown in Eq. (62), the a posteriori attitude matrix,
@(k + 1]k + 1), is computed based on the a posteriori estimate
@(k + 1|k + 1). This estimate of the attitude matrix is then used
in consecutive prediction and filtering steps, which in turn implies
a full reset control? of the parameter vector

Fh+1)=0(+1)— 6k +1]k+1) (64)

where 6°(k + 1) is the reset state vector at #; . 1, and a corresponding
reset of the state estimate

Fhk+1k+1)=0 (65)

which is then used in the ensuing time propagation step.

Remark 8. Notice that because the reset control is applied to both
the state vector and its estimate, no changes are necessary in the
estimation error covariance matrix.

Attitude Matrix Orthogonalization

Although the true attitude matrix is orthogonal, the filtered DCM
will not be orthogonal, due to numerical implementation errors and
the approximate nature of the third-order formula used to com-
pute the attitude from the estimated parameters. To improve the
algorithm’s accuracy and to enhance its stability, an additional or-
thogonalization stage is introduced into the estimator, immediately
following the measurement update stage. In the orthogonalization
stage, the filtered attitude matrix is orthogonalized, that is, the or-
thogonal matrix closest to the filtered attitude matrix is found. This
orthogonal matrix is then propagated to the next measurement up-
date point.

In the sequel, the Euclidean norm (2-norm) will be used for vec-
tors, and the Frobenius norm (F-norm) will be used for matrices.

Given the a posteriori attitude matrix D(k + 1 | k + 1), the matrix
orthogonalization problem is to find

D'k +1k+12 argmgnllﬁ(k+1|k+l)——C|l (66)
subject to
C'C=1 (67)

Being a special case of the orthogonal Procrustes problem,?! the
matrix orthogonalization problem can be easily solved using the
singular value decomposition (SVD). Thus, if

Dk +1k+1)=Uk+ DTk +1)VT(k+1)  (68)

is the SVD of the matrix [)(k + 1]k + 1) where Uk + 1) and
V (k+ 1) are the left and right singular vector matrices, respectively,
and X (k + 1) is the singular value matrix, then

D+ 1k+ D =Uk+DVTE+1) (69)

The excessive computational burden associated with the SVD
might render its use prohibitive in certain applications, e.g., in real-
time attitude determination and control. In such cases, an alternative
orthogonalization scheme, introduced by Bar-Itzhack and Meyer,?
can be used. According to this scheme, the orthogonalized matrix
D*(k + 1|k + 1) can be computed iteratively using the recursion

Xjp1=2X;—3X;X7X;, Xo=Dk+11k+1) (70)
where X ; 22 b (k+11k+1). This scheme was shownin Ref. 22
to be globally convergent and to possess a quadratic convergence
rate.

Noting the fast convergence rate of the recursive orthogonaliza-
tion method just shown, this scheme is incorporated into our estima-
tion algorithm using just a single step of the recursion (70). Thus, an
improved (nearly orthogonal), a posteriori estimate for the attitude
matrix is computed as

D*k+11k+ D) =NEk+ DDk +1]k+1 (7D

where the linear transformation that maps the a posteriori attitude
matrix into its orthogonal version is defined by

NEk+DEH - ADUk+11k+ DDk +11k+1)  (72)
DCM Orthogonalization: Analysis

The introduction of the external orthogonalization step into the
estimator may conceivably affect its performance and statistical
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characteristics, thus calling for appropriate adjustments in the algo-
rithm to preserve its theoretical properties. In the remainder of this
section, the possible effects of the orthogonalization procedure (71)
on the a posteriori state estimate and error covariance matrix are
analyzed. In fact, as the next theorem shows, to first-order accuracy
the orthogonalization procedure does not affect the estimator.

Theorem 1.Let D*(k+1 | £41) denote the orthogonalized version
of D(k + 1|k + 1), computed in Eq. (71). Then

D*(k+11k+1) = [I+n[0%k+1k+DNDG*k+11k+1)  (73)
where n[é(k + 1|k 4+ 1)) is a matrix-valued function that satisfies
LBk + 11k + DI~ OUBK+11k+ DI (74)

Proof. To prove the theorem we need to show that
NGk +1) =T +7[6k + 1]k +1)] (75)

with n[é(k + 1]k + 1)] satisfying Eq. (74). To this end, rewrite
Eqg. (62) as

Dk +11k+1) = ®LAGK + 1,01 D"k | k) (76)
which is an implied definition of the matrix-valued function ().
Using Eq. (76) in Eq. (72) and noting the orthogonality of D*(k | k)
yields

Nk+1) =31 - 1Q[Ak + 1.1 (A +1.6)] (77
Using Eq. (63) we have
A2+ 1,k) = —10k + 11k + DI*I

+ Ok +1k+DOTG+11k+D (78a)

Adk 4+ 1,k) = |8k +1]k+ DOk +1[k+Dx] (78b)
whence

GLAG+ 1K) =T =[Ok +1k+Dx]+pi+pa+pus (79

where the following definitions have been used:
s ]

2 =10k + 1k + DI

40k +11k+ DO (k+11k+ D] (80a)

o 26K+ 11k + DIPOK +11k+1)x]  (80b)

12 Bk + 11k +1) x @k)T)x] (80c)
It is easy to show that
il < 210+ 114 DI 81)
1 ~
= —16Gk+11k+ D (82)
[l 22 3ﬁll ( I |

Consider now the vector product 8(k + 1 [k + 1) x @k)T, ap-
pearing in Eq. (80c). As will be shown in the sequel [see the state
prediction equation (88)], regarding w(¢) as approximately constant
over the small sampling interval [#;, #; 4 ] yields

ST ~ Bk +1]k) (83)

Hence, using Eq. (57) we have
16 +11k+1) x @& T

=10k +11k+1) x50k + 11k + D]
<16+ 11k + DII8OK + 11k + 1]

<10+ 11k + D (84)

Using Eq. (84) in Eq. (80c) yields

1 ~
llpall < 3—ﬁn9<k+1|k+1>||2 (85)

Using Egs. (81), (82), and (85) in Eq. (79) and substituting the
result in Eq. (77) then yields Eq. (75), completing the proof. 0

Now, from Eq. (73) we conclude that, after the initial transient
period, the effects of the orthogonalization procedure on the filtered
DCM are only of second order in 8(k + 1|k + 1). Hence, to first-
order accuracy, no changes in 8(k + 1|k + 1) are necessary as a
result of the orthogonalization, and consequently no changes are
required in the a posteriori covariance matrix.

Prediction

In the prediction step, the reset a posteriori state estimate at time ¥
and its corresponding error covariance matrix,8¢(k | k) and P (k | k),
respectively, are propagated to time £ 4 ;.

Noting Egs. (15) and (64) we have, after the state reset at time #,

' w(t)dt
(86)

Hence, because the estimator is unbiased, the predicted state at #;
is

0(k+1)=9"(k)+‘/' w(t)dr = Ok k) +

Tk Tk

é(k+1|k):/ ' w(z)dr (87)

%

In practice, however, we only have access to the measured value of
the angular velocity. Thus, using the measured velocity in Eq. (87)
yields the following state prediction equation:

é(k+1|k)=/ N @(r)dr (88)

te

Subtracting Eq. (88) from Eq. (86) and noting Eq. (18), the cor-
responding prediction error equation is

Ok +11k) = é(klk)—/ Sw(z)dt (89)

3

Noting that the two terms in the RHS of Eq. (89) are uncorrelated, the
following, trivially simple covariance propagation equation results:

P(k-?—llk):P(ka)—i—/» Q(m)dr (90)

%

Remark 9. Any quadrature formula can be used in Eq. (88).
Simpson’s quadrature scheme yields

O+ 11k = LT[0k +40(k+ ) + ok + 1] ©OD

where w(k + %) 200+ (T/2)]. The selection of quadrature
scheme should be based mainly on the expected spacecraft dynam-
ics; thus, for a slow-dynamics case, simple trapezoidal integration
will probably suffice. Notice also that in many spacecraft appli-
cations, rate-integrating gyros are used, which give 6(k + 1 [k)
directly (rendering the prediction stage even simpler).

Remark 10. If the intensity of the RG measurement noise can be
assumed to be time invariant (as is often the case), then the error
covariance propagation is simply

Pk+1lk)y=Pklk)+ QT (92)

If, however, Q(t) is time varying, Simpson’s integration (or some
other quadrature formula) can be used.

Attitude Matrix Prediction
To predict the attitude matrix at f; .| we use the most recent
estimate of the parameter vector 8(k + 1|k), the orthogonalized
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estimate of the attitude matrix corresponding to #,, and the measured
angular velocity matrix, in Eq. (17). This yields

D+ 11k = {I+Ak+1,k) + A%k + 1,k)

LA+ 1,0 + ITIAK + 1, Q)

—QAK +1,k)1} D" (k | k) ©3)
where the a priori estimate of A(k + 1, k) is defined as
Ak+ 1, k) 2 [0k + 1| k)x] 94)

Numerical Example

To demonstrate the performance of the new attitude estimation
algorithm, a numerical simulation study was conducted, in which

simulated vector measurements and RG data were processed by
the new estimator to obtain the estimated attitude matrix at each
measurement processing point.

The standard deviation of the gyro noise power spectral density
was 0.01 deg/h!/2, Both the body-frame and the reference frame
vector measurements were contaminated by zero-mean, white,
Gaussian noise sequences, orthogonal to the true directions, which
were generated via the following algorithms:

B wak + 1) x ok + 1)
nu(k+1)'x“(k+l)llwu(k+1) x up(k + D 2

wok+ 1) xvok + 1)
wy(k + 1) x volk + Dl

nyk+1) =x,(k+1) (96)
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where w, (k + 1) and w,(k + 1) are randomly chosen vectors and
x,(k + 1) and x, (k 4 1) are normal deviates satisfying

xalk+1) ~ N(0,02), xk+1)~N(0,02)  ©O7
implying

R, = oI, R, =021 (98)
The noise equivalent angles were setto o, = o, = 100 arc-s. Notice
that the values assumed for both the gyro white noise drift and the
star tracker noise are very conservative, compared to the current
technology state of the art.>?3

The initial attitude estimate was set to the identity matrix (thus
assuming that S, and S, coincide at ) whereas the true attitude
corresponded to Euler angles of 30, 20, and 10 deg in roll, pitch, and
yaw, respectively. Again, this constitutes a conservative assumption,
as we can always use the first vector measurements to find a rough
initial estimate of the attitude using some point-estimation scheme,
e.g., QUEST,* or the approximate initialization method suggested
in Ref. 13. However, it was found that there was no need to use such
an initialization scheme, as all simulation runs starting at the identity
matrix successfully converged (a detailed Monte Carlo study of the
convergence of the algorithm and the orthogonality of the estimated
attitude matrix appears in Ref. 25).

The angular velocity of S, relative to S, was chosen to be

2sin(0.2¢t +w/4)

3sin(0.1¢ + 7 /2) | deg/s 99)
65in(0.3t 4+ 37 /4)

w(t) =

i.e., an angular velocity with time-varying direction. The filter was
run at a rate of 20 Hz, i.e., the sampling interval was T = 0.05 s,
whereas the measurement processing rate was a slow 1 Hz.

Figure 1 presents the three true Euler angles, the estimated angles
(computed using the estimated attitude matrix) and the correspond-
ing estimation errors, in a typical run. The Euler angle sequence
assumed was 3—2—1. The steady-state estimation errors of the Euler
angles computed using the estimated DCM in a typical run were
smaller than 0.015 deg (1-0). As can be clearly evidenced from
Fig. 1, the estimator’s performance was not affected by the chang-
ing direction of the angular velocity vector, thus demonstrating the
robustness of the new algorithm.

Conclusions

A computationally efficient, nonlinear estimation algorithm has
been presented that uses vector measurements and gyro readings to
estimate the DCM. The algorithm is based on a recently introduced,
third-order minimal parameterization of the attitude matrix. This
facilitates the use of a three-dimensional filter to estimate the nine-
parameter attitude matrix.

The extremely simple kinematics obeyed by the particular param-
eter vector chosen is inherited by the estimator’s time propagation
equations, which results in the filter’s high numerical efficiency.
The DCM orthogonality constraint is dealt with by incorporating
an orthogonalization procedure following the measurement update
stage. Based on a single-step implementation of an iterative orthog-
onalization technique, the incorporation of this procedure into the
estimator was shown to not require any further modifications in the
structure of the algorithm.

A numerical simulation study that demonstrates the performance
of the proposed algorithm has been presented. Assuming conser-
vative gyro noise levels and vector observation errors, the attitude
estimated via the new algorithm has been shown to be accurate and
robust with respect to initialization errors in a case with a direction-
changing angular velocity.
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